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Abstract

One of the recent breakthroughs in astronomy was the first

observation of a black hole shadow, due to gravitational light

deflection in the vicinity of a black hole photon sphere. This

thesis sets out to visualize gravitational light deflection by a

Schwarzschild black hole using Python simulations. Starting

from basics of differential geometry, the concepts and defini-

tions of metric, connection, Riemann curvature tensor and the

geodesic equation are introduced. Then moving to Einstein’s

general theory of relativity, the field equations are stated and

the Schwarzschild metric is found as the unique static spher-

ically symmetric solution. In order to derive the geodesics of

Schwarzschild, which are crucial in providing the theoretical ba-

sis for this computational project, the Euler-Lagrange equations

are applied. Thus, the ordinary differential equations (ODE)

describing the trajectories of light rays near the black hole are

obtained. Next, the initial value problem of the given ODE can

be solved, yielding the trajectories of light rays approaching

the black hole for given initial conditions. Python simulation

algorithms are presented in pseudo-code form, which include

the algorithms computing the trajectories, and the visualiza-

tion of light deflection. Finally, the visualization algorithm re-

veals how rectangular coordinates are transformed to show how

equirectangular images as input are optically distorted by the

Schwarzschild black hole.
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Chapter 1

Introduction

One of the most recent astronomical achievements was the discovery of a

black hole shadow created by gravitational light deflection in the vicinity

of a black hole photon sphere [2–4].

A ring-like form with a dark core area [4], the black hole’s shadow, was

discovered using a variety of calibration and imaging techniques, and it

stayed consistent over numerous EHT observations. As visible in Figure 1.1,

Messier 87 [2], a massive galaxy in the nearby Virgo galaxy cluster, features

a black hole at its center.

Figure 1.1 First Shadow [3]

The Event Horizon Telescope (EHT) is a planet-scale array of eight ground-

based radio telescopes that was created in conjunction with scientists from
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all around the world to capture images of a black hole [2]. Which is the

basis for a technique known as very-long-baseline interferometry (VLBI) [2].

VLBI synchronizes telescopes all around the world and uses the rotation of

our planet to form a gigantic, Earth-size observatory [2].

On April 10, 2019, EHT researchers revealed that they have succeeded

in presenting the first direct visual evidence of a supermassive black hole

and its shadow [2–4]. As predicted by Einstein’s general relativity, the

EHT is the result of years of international work and gives scientists with a

new instrument for exploring the Universe’s most extreme objects.
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Chapter 2

Spacetime

2.1 Differential Geometry

In this section, the basic differential geometry concepts and definitions

involved in this signature work, including tensor, metric, connection, Rie-

mann metric, and geodesics, are given with the help of Advanced General

Relativity written by John Stewart [1].

2.1.1 Tensor

Definition 1. A (1, 2) tensor S on Tp (M) is a map [1]

S : Tp (M)× Tp (M)× T ∗
p (M) → R

which is linear in each argument.

2.1.2 Metric

Definition 2. A metric tensor g at a point p in M is a symmetric (0, 2)

tensor. It assigns a magnitude
√

|g (X,X)| to each vector X in Tp (M),

denoted by d (X), and defines the angle between any two vectors X, Y of
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2.1 Differential Geometry

non-zero magnitude in Tp (M) via [1]

a (X, Y ) = arccos

[
g (X, Y )

d (X) d (Y )

]
.

2.1.3 Connection

Definition 3 (Linear Connection [1]). A linear connection ∇ on M is a

map sending every pair of smooth vector fields (X, Y ) to a vector field ∇XY

such that

∇X (aY + Z) = a∇XY +∇XZ

for any constant scalar a, but

∇X (fY ) = f∇XY + (Xf)Y

when f is a function, and it is linear in X

∇X+fYZ = (∇XZ + f∇YZ) .

Further, acting on functions f , ∇X is defined by

∇Xf = Xf.

Definition 4 (Covariant Derivative). ∇XY is not linear in Y , ∇ is not

a tensor. While, ∇XY is linear in X, thus defining a (1, 1) tensor ∇Y

mapping X to ∇XY , called the covariant derivative of Y , where ∇XY is

called the covariant derivative of Y with respect to X.

Definition 5 (Components of Connection [1]). Let (ea) be a basis for vector

fields and write ∇ea as ∇a. Since ∇aeb is a vector there exist scalars Γc
ba

such that

∇aeb = Γc
baec.
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2.1 Differential Geometry

The Γc
ba are called the components of the connection.

Theorem 1. If a manifold possesses a metric g then there is a unique

symmetric connection, the Levi-Civita connection or metric connection ∇

such that [1]

∇g = 0.

Moreover, the Levi-Civita connection coefficient in the three-dimensional

Euclidean space shares the same definition with Christoffel symbols in Rie-

mannian geometry, which is

Definition 6. Christoffel symbols is defined by formula [1]

Γi
km =

1

2
gin (gmn,k + gkn,m − gkm,n) .

2.1.4 Riemann

The metric tensor g, describes what the Levi-Civita connection, which

in return completely describes Riemann curvature tensor. The Riemann

curvature tensor in which the gravitational field is actually manifests. That

is, the metric tensor g is said to describe the gravitational field.

Definition 7. Riemann metric tensor is [1]

R (X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇|X,Y |Z,

where ∇X , ∇Y and ∇|X,Y | are Levi-Civita connection.

Definition 8. Riemann curvature tensor is [1]

R (u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w.

Moreover, the Ricci curvature tensor is a contraction of the 1st and 3rd

index of Riemann curvature tensor, which is defined as
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2.2 Einstein’s Field Equations

Definition 9. The Ricci scalar is [1]

R = gabRab.

Definition 10. The Ricci curvature tensor is [1]

Rab = Rc
acb.

2.1.5 Geodesic Equation

Generally, starting from the metric tensor which generalizes the property of

Euclidean space, a manifold is called Riemannian manifold if it is equipped

with positive definite metric tensor. On a Riemannian manifold, the curve

connecting two points, that has the smallest length is called geodesic.

Definition 11 (Geodesics [1]). Let X be a vector field such that ∇XX = 0.

Then the integral curves of X are called geodesics.

Theorem 2 ([1]). There is precisely one geodesic through a given point

p ∈ M in a given direction Xp.

2.2 Einstein’s Field Equations

The basic form of Einstein’s field equations is given as [1]

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν

where Rµν represents Ricci curvature tensor, R represents Ricci curvature

scalar, gµν represents metric tensor, Λ represents cosmological constant,

G represents gravitational constant, c represents the speed of light, κ =

8πG/c4 ≈ 2.077×10−43N−1 represents the Einstein gravitational constant,

and Tµν represents the stress energy-momentum tensor. The left hand side

6



2.2 Einstein’s Field Equations

of the equation,
(
Rµν − 1

2
Rgµν + Λgµν

)
, tells the geometry of spacetime,

by showing the curvature of spacetime as determined by the metric g.

While the right hand side of the equation,
(
8πG
c4

Tµν

)
, displays matter energy

content of spacetime. Or frankly speaking, the right hand side describes the

matter movement. Hence, easily speaking, the the reason why Einstein’s

field equations are important is it connects geometry of spacetime with

matter movement.

2.2.1 Components of Einstein’s Field Equations

The spacetime described by Einstein’s field equation is measured in four

dimensions which are 0 time, 1 x-axis, 2 y-axis, and 3 z-axis, denoted by the

Greek letters µν. Where 1, 2, and 3, i.e., x, y, and z-axis together describe

the space while 0 describes the time. In this case, though the Einstein’s

field equation seems like to be a single equation, there are actually 16 non-

linear partial differential equations expended by the single equation. The

reason is that because the spacetime described by the equation has four

dimensions, which results in Rµν , gµν , gµν and Tµν , these four tensors, all

being in 4 dimensions. Therefore, there are 4× 4 = 16 equations in total.

However, due to the symmetry property of tensors, 6 equations out of 16

are duplicate, which makes them total of 10 non-linear partial differential

equations. The expended metric tensor from g00 to g33 is shown as

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 .

Since the metric tensor is a symmetric tensor, that is to say, gµν = gνµ,

the ten components of the metric tensor without the duplicate ones are
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2.2 Einstein’s Field Equations

therefore

gµν =


g00 g01 g02 g03

g11 g12 g13

g22 g23

g33

 ,

which are in total 10 components. Similarly, the stress energy-momentum

tensor, Tµν , is also a symmetric tensor. That is to say, Tµν = Tνµ holds as

well. Therefore, as the metric tensor, the components of the stress energy-

momentum tensor are in total 10 components, without the duplicate ones.

2.2.2 Ricci Curvature Tensor

As introduced above, the Ricci curvature tensor is a contraction of the 1st

and 3rd index of Riemann curvature tensor. Ricci curvature tensor actually

tracks volume change along geodesics, which means how volume grow and

shrink in geodesics.

Depending on the curvature, which is actually the manifold that are

dealing with, Ricci curvature R shows the change in volume. And it hap-

pens either in a static way, a growing or decreasing way. Since the volume

change is not so relevant to this signature work, it will not be further

discussed.

2.2.3 Ricci Scalar

As shown above, Ricci curvature tensor is actually a measurement how

an object shrinks or grows in size, or remains static based on the sign of

curvature of spacetime (= 0 static, > 0 converging, < 0 diverging).

While, Ricci scalar actually shows how an object deviates from standard

Euclidean space. And in this case, the sign of Ricci scalar really matters.

The definition of Ricci scalar is R = gabRab [1].
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2.2 Einstein’s Field Equations

2.2.4 Einstein Tensor

Since Einstein’s gravity is with the curvature of spacetime and Riemannian

geometry which dealing with curvature, based on Marcel Grossman and

Michele Besso’s basic thoughts of tensor, Einstein curvature tensor is given

as a combination of Ricci curvature tensor and metric tensor, defined as

Definition 12. The Einstein curvature tensor is [1]

Gab = Rab −
1

2
Rgab,

which can also be derived directly from Einstein’s field equations.

2.2.5 Stress Energy-Momentum Tensor

The stress energy-momentum tensor is actually the relativistic extension of

classical stress tensor. It describes energy and momentum flux throughout

spacetime and gives rise to the gravitational field in general relativity.

As shown in Einstein’s field equations, the stress energy-momentum

tensor can be expressed as

Tµν =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 ,

where T00 describes energy density, T01, T02, T03, T10, T20, T30 describe mo-

mentum density, T12, T21, T13, T31, T23, T32 describe shear stress, and T11, T22, T33

describe pressure.
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Chapter 3

Schwarzschild

Now we have the Einstein’s field equations and we are able to see how they

predict the existence of black holes, gravitational waves and the expansion

of the universe by effecting on cosmology.

When it comes to black hole solutions, we can categorize them for elec-

trically charged and uncharged black holes, and rotating and non-rotating

black holes. We are going to look at the uncharged non-rotating case,

called the Schwarzschild solution, which is governed by the Schwarzschild

metric. The Schwarzschild metric is the spacetime metric for a spherically

symmetric non-rotating mass that has no electric charge.

The Schwarzschild metric predicts gravitational time dilation, the grav-

itational Doppler effect, the bending of light due to gravity, shifting in per-

ihelion of orbits, and the existence of black holes with event horizon with

a radius of Rs, which is also called the Schwarzschild radius [5].

The metric was first discovered by Karl Schwarzschild, who published

the paper “On the Gravitational Field of a Mass Point according to Ein-

stein’s Theory” in Janurary, 1916, only few months after Einstein’s general

relativity paper in 1915.
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3.1 Schwarzschild Metric

3.1 Schwarzschild Metric

In this section, we will show basic derivation of Schwarzschild metric [5].

3.1.1 Coordinates

Since we are dealing with a spherically symmetric mass, it is better to deal

with spacetime in spherical coordinates. Therefore, we are going to use

the spherical coordinates (ct, r, θ, ϕ) instead of the Cartesian coordinates

(ct, x, y, z) as defined

r =
√
x2 + y2 + z2

θ = arccos
(z
r

)
= arccos

(
z√

x2 + y2 + z2

)
ϕ = arctan

(y
x

)
,

where r is the radius, θ is the angle from the north pole or called co-latitude,

and ϕ is the angle of rotation around the vertical axis or called longitude,

as shown in Figure 3.1.

Figure 3.1 Spherical Coordinates
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3.1 Schwarzschild Metric

3.1.2 Summations

Greek letters are used as summation index, which refers to all four space-

time indices

gµν , µν : 0 → ct, 1 → r, 2 → θ, 3 → ϕ.

While, Latin or English letters are used for the summation index which

only refers to the spatial indices without time, as

gij, ij : 1 → r, 2 → θ, 3 → ϕ.

3.1.3 Schwarzschild Metric Derivation

As introduced above, given that the basic form of Einstein’s field equations

is given as [1]

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν .

To solve for the Schwarzschild solution from the Einstein’s field equations,

basically, we put in an energy-momentum tensor Tµν to the right hand side

of the Einstein’s field equations and solve for the metric tensor gµν , where

the Ricci curvature tensor Rµν is made of the second derivative of gµν .

That is to say, we put in a description of the mass energy and momentum

in spacetime, and we get out a complete description of the geometry of

spacetime.

The energy-momentum tensor of the interior of a body is non-zero. For

example, inside our earth, there are mass and pressure such that the energy-

momentum tensor inside the earth is non-zero. However, the exterior of

a body, lets say, outside the earth, we can assume that the spacetime is

approximately a vacuum so that the energy-momentum tensor Tµν is zero.

Thus, for a spherically symmetric mass, we set the energy-momentum

tensor Tµν in the Einstein’s field equations to be zero.
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3.1 Schwarzschild Metric

Moreover, we are also going to set the cosmological constant to zero

since it is basically negligible unless we are working at cosmological scales,

which gives Λ = 0.

Therefore, the components 8πG
c4

Tµν and Λgµν are all zero and what is

left is actually the Einstein tenor

Gµν = Rµν −
1

2
Rgµν = 0.

If we take the trace of what is left using the inverse metric tensor, gµν , as

Gµνg
µν = Rµνg

µν − 1

2
Rgµνg

µν = 0,

where the trace of the Ricci tensor is the Ricci scalar, i.e., RµνR
µν = Rµ

µ,

and the trace of gµνg
µν is the four by four identity matrix δµµ whose value

is 4.

Thus we have

Rµ
µ −

1

2
Rδµµ = R− 1

2
R · 4 = 0

which ends up with

R = 0,

i.e., the Ricci scalar is zero.

Hence, for a vacuum region, the Einstein’s field equations is simplified

to the Ricci tensor being zero, as Rµ
µ = 0, which is called the Ricci flat

spacetime [5]. Given the spacetime is Ricci flat, there are no immediate

changes in the volume of a group of test particles outside the massive

particle.

While, the vacuum outside the mass still involves curved spacetime

because the Riemann curvature tensor here is non-zero, as Rρ
σµν ̸= 0.

Therefore, the Schwarzschild metric derivation takes Rµ
µ = 0 and solves

for the components of the 4×4 spacetime metric, that describes the curved

13



3.1 Schwarzschild Metric

spacetime near a massive particle, M .

Moreover, the assumption that the effects of gravity become negligible

as moving far away from the mass M is proposed. That is to say, the

spacetime becomes basically flat described by the Minkowski metric in

Cartesian coordinates, 
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

As for the Minkowski metric in spherical coordinates which represents the

flat spacetime, given the Cartesian coordinates basis as

x = r (sin θ) (cosϕ)

y = r (sin θ) (sinϕ)

z = r (cos θ) ,

we need to change from Cartesian coordinates basis to the spherical coor-

dinates basis using multi-variable chain rule,

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
+

∂z

∂r

∂

∂z
∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y
+

∂z

∂θ

∂

∂z
∂

∂ϕ
=

∂x

∂ϕ

∂

∂x
+

∂y

∂ϕ

∂

∂y
+

∂z

∂ϕ

∂

∂z
,

which gives

∂

∂r
= sin θ cosϕ

∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
∂

∂θ
= r cos θ cosϕ

∂

∂x
+ r cos θ sinϕ

∂

∂y
− r sin θ

∂

∂z
∂

∂ϕ
= −r sin θ sinϕ

∂

∂x
+ r sin θ cosϕ

∂

∂y
+ 0,
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3.1 Schwarzschild Metric

then calculate the dot products of the basis vectors,

∂2

∂r2
=

∂

∂r
· ∂

∂r
= − sin2 θ cos2 ϕ− sin2 θ sin2 ϕ− cos2 θ

∂2

∂θ2
=

∂

∂θ
· ∂

∂θ
= −r2 cos2 θ cos2 ϕ− r2 cos2 θ sin2 ϕ− r2 sin2 θ

∂2

∂ϕ2
=

∂

∂ϕ
· ∂

∂ϕ
= −r2 sin2 θ sin2 ϕ− r2 sin2 θ cos2 ϕ.

We are able to get these components for the metric tensor in spherical

coordinates,
∂2

∂r2
= −1

∂2

∂θ2
= −r2

∂2

∂ϕ2
= −r2 sin2 θ,

while
∂2

∂ct2
= +1

which is unchanged.

Hence, the Minkowski metric in spherical coordinates is given as
1 0 0 0

0 −1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 .

The Minkowski metric should be the metric far away from the mass as r

approaches infinity and spacetime becomes flat. While close to the mass,

the metric components of the curved spacetime are unknown. However,

some assumptions can be used to narrow down the exact form that the

metric components should take.

The first assumption is we assume that the spacetime is static, which

tells two things [5],
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3.1 Schwarzschild Metric

1. the metric does not depend on time, that is to say

∂

∂t
gµν = 0;

2. the spacetime is symmetric when reversing the time coordinate, which

is equivalent to say that gµν will not change as t → −t. This also implies

that the black hole is non-rotating.

Moreover, since basis vectors are just partial derivatives with respect to

a coordinate variable (here is r, θ, ϕ), reversing the direction of the time

coordinate also reverses the direction of the time basis vector, as

et =
∂

∂ct
→ ∂

∂c (−t)
= − ∂

∂ct
= −et

as t → −t.

However, for different components of the metric, the sign will vary, as

gtt = g (et, et) = g (−et,−et) = gtt

while

gti = (et, ei) = g (−et, ei) = −gti,

where i = r, θ, ϕ.

Since gti = −gti, for i = r, θ, ϕ we have

gti = 0,

that is to say, the spacetime metric gµν ’s components gtr, gtθ, gtϕ, grt, gθt,
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3.1 Schwarzschild Metric

gϕt are all 0, which gives to be


gtt 0 0 0

0 grr grθ grϕ

0 gθr gθθ gθϕ

0 gϕr gϕθ gϕϕ

 .

The second assumption made is that the spacetime is spherical symmetry,

which is equivalent to say that the θ and ϕ components should resemble

the metric for a sphere of radius r, that is,
gtt 0 0 0

0 grr grθ grϕ

0 gθr gθθ gθϕ

0 gϕr gϕθ gϕϕ

⇒


gtt 0 0 0

0 grr grθ grϕ

0 gθr −C (r) r2 0

0 gϕr 0 −C (r) r2 sin2 θ


where C (r) is radial scaling function.

Moreover, if we want the radial basis vector er to stick out normal to

the sphere in the radial direction, it must be perpendicular to both eθ and

eϕ, which gives

eθ · er = 0 = gθr = grθ

eϕ · er = 0 = gϕr = grϕ.

And hence, under our assumption so far, the spacetime metric is diagonal

and is given as 
gtt 0 0 0

0 grr 0 0

0 0 −C (r) r2 0

0 0 0 −C (r) r2 sin2 θ

 ,

where the remaining gtt and grr components should only depend on the
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3.1 Schwarzschild Metric

radial coordinate r, if we want to maintain spherical symmetry as stated

early above.

Let gtt to be A (r) and grr to be B (r). Since the metric component B (r)

corresponds to a space-like direction (follow the (+−−−) equation), using

a negative sign for it to get
A (r) 0 0 0

0 −B (r) 0 0

0 0 −C (r) r2 0

0 0 0 −C (r) r2 sin2 θ

 .

For further simplification, we redefine the radial coordinate r to be r̃ =√
C (r)r which will eliminate the function C (r) on the last two metric

components and gives the metric as
A (r̃) 0 0 0

0 −B (r̃) 0 0

0 0 −r̃2 0

0 0 0 −r̃2 sin2 θ


and just for simplicity, just write r̃ as r in the following context, thus, the

Schwarzschild metric gµν is given in the form of


A (r) 0 0 0

0 −B (r) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 .

After simplifying the form of the metric as much as possible, in order

to solve for A (r) and B (r), we will going to calculate the Levi-Civite

connection coefficients Γσ
µν , then calculate the Ricci tensor Rµν and then
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3.1 Schwarzschild Metric

force the metric to give us the results of Newtonian gravity in the limit of

low velocity and weak gravity, which will give us the Schwarzschild metric.

There are 13 non-zero Levi-Civite connection coefficients in the Schwarzschild

solution, and only 9 of them are independent.

Let us start by calculating the Levi-Civite connection coefficients.

Since the spacetime metric gµν is diagonal, we can easily get the inverse

metric just by taking the reciprocal of all of the diagonal elements as

gµν =


1

A(r)
0 0 0

0 1
−B(r)

0 0

0 0 1
−r2

0

0 0 0 1
−r2 sin2 θ


whose indices are

g00 = A (r) , g00 =
1

A (r)
,

g11 = −B (r) , g11
1

−B (r)
,

g22 = −r2, g22
1

−r2
,

g33 = −r2 sin2 θ, g33
1

−r2 sin2 θ
.

Given the standard formula for the Levi-Civite connection coefficients as

Γσ
µν =

1

2
gσα (∂νgαµ + ∂µgαν − ∂αgµν) ,

since the metric is diagonal, the two indices of Levi-Civite connection co-

efficients always need to match if the components are to be non-zero. So

we can replace all the α indices with σ to rewrite the formula for the Levi-

Civite connection coefficients as

Γσ
µν =

1

2
gσσ (∂νgσµ + ∂µgσν − ∂σgµν) .
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3.1 Schwarzschild Metric

Let us start from the calculation of Γ0
µν , and the rest of Γ1

µν , Γ
2
µν and Γ3

µν

are similar.

Substitute σ with 0, we have

Γ0
µν =

1

2
g00 (∂νg0µ + ∂µg0ν − ∂0gµν)

The values of µ and ν make differences:

1. When µν = 00,

Γ0
00 =

1

2
g00 (∂0g00 + ∂0g00 − ∂0g00) .

Since g00 does not depend on time, all the time derivative terms, i.e., ∂0g00,

∂0g00 and ∂0g00, go to zero which gives

Γ0
00 = 0.

2. When µν = ii where i = 1, 2, 3,

Γ0
ii =

1

2
g00 (∂ig0i + ∂ig0i − ∂0gii) .

Since g0i is not the diagonal element of the metric, it is assigned to 0.

Moreover, again, since the metric components does not depend on time,

which gives

Γ0
ii = 0, where i = 1, 2, 3.

3. When µν = ij where i, j = 1, 2, 3 and i ̸= j,

Γ0
ij =

1

2
g00 (∂jg0i + ∂ig0j − ∂0gij) .
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3.1 Schwarzschild Metric

Similarly, g0i, g0j and gij are off diagonal which gives

Γ0
ij = 0, where i, j = 1, 2, 3 and i ̸= j.

4. When µν = 0i where i = 1, 2, 3,

Γ0
0i =

1

2
g00 (∂ig00 + ∂0g0i − ∂0g0i) .

Similar to above, we have g0i = 0 which gives

Γ0
0i =

1

2
g00∂ig00

where g00 = A (r) and g00 = 1
A(r)

.

Since the function A (r) only depends on r, only the partial r term gives a

non-zero result, thus

Γ0
01 = Γ0

10 =
1

2

1

A
(∂rA (r)) ,

Γ0
02 = Γ0

20 =
1

2

1

A
(∂θA (r)) = 0,

Γ0
03 = Γ0

30 =
1

2

1

A
(∂ϕA (r)) = 0.

Therefore, the only one connection coefficient left for Γ0
µν is Γ0

01 = Γ0
10 =

1
2
1
A
(∂rA (r)).

Just as stated, similar to the calculation of Γ0
µν , we can calculate the

following non-zero connection coefficients for Γ1
µν , Γ

2
µν and Γ3

µν . And all 9
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3.1 Schwarzschild Metric

non-zero Levi-Civite connection coefficients are

Γ0
01 = Γ0

10 =
1

2

1

A
(∂rA (r)) ,

Γ1
00 =

1

2

1

B
(∂rA (r)) , Γ1

11 =
1

2

1

B
(∂rB (r)) , Γ1

22 = − r

B (r)
, Γ1

33 = −r sin2 θ

B (r)
,

Γ2
33 = − sin θ cos θ, Γ2

12 = Γ2
21 =

1

r
,

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cot θ.

Presenting these connection coefficients in arrays makes it more obvious

Γ0
µν →


0 ∂rA

∂2A
0 0

∂rA
∂2A

0 0 0

0 0 0 0

0 0 0 0

 , Γ1
µν →


∂rA
∂2B

0 0 0

0 ∂rB
∂2B

0 0

0 0 − r
B

0

0 0 0 − r sin2 θ
B

 ,

Γ2
µν →


0 0 0 0

0 0 1
r

0

0 1
r

0 0

0 0 0 − sin θ cos θ

 , Γ3
µν →


0 0 0 0

0 0 0 1
r

0 0 0 cot θ

0 1
r

cot θ 0

 .

Given these Levi-Civite connection coefficients, to solve for functions A (r)

and B (r), we can conduct the calculation of Ricci tensors.

To remember, given the Riemann tensor

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γα

νσΓ
ρ
µα − Γβ

µσΓ
ρ
νβ,

the Ricci tensor is just the Riemann tensor with its upper and lower middle

indices summed together, as

Rγδ = Rµ
γµδ = ∂µΓ

µ
δγ − ∂δΓ

µ
µγ + Γα

δγΓ
µ
µα − Γβ

µγΓ
µ
δβ.
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3.1 Schwarzschild Metric

Therefore, the Ricci components are

R00 = Rµ
0µ0 = ∂µΓ

µ
00 − ∂0Γ

µ
µ0 + Γα

00Γ
µ
µα − Γβ

µ0Γ
µ
0β,

R11 = Rµ
1µ1 = ∂µΓ

µ
11 − ∂1Γ

µ
µ1 + Γα

11Γ
µ
µα − Γβ

µ1Γ
µ
1β,

R22 = Rµ
2µ2 = ∂µΓ

µ
22 − ∂2Γ

µ
µ2 + Γα

22Γ
µ
µα − Γβ

µ2Γ
µ
2β.

Now, take R00 as example, for each of the four terms, we need to look at the

non-zero connection coefficients and decide what the non-zero coefficients

in these summations are, referring to the solved 9 non-zero coefficients.

For the Γµ
00 in R00, which has two zero indices on the bottom of the con-

nection coefficient, there is only one single non-zero connection coefficient

with two zero indices on the bottom which is Γ1
00 = 1

2
1
B
(∂rA (r)). Thus,

even thought the µ index is technically summed from 0 to 3, only the µ = 1

term stays around.

While, for the second term Γµ
µ0 of R00, there are actually no connection

coefficients with 0 index on the lower right with the other two indices

matching. Thus, it goes to zero as Γµ
µ0 = 0.

For the third term Γα
00Γ

µ
µα, α must be 1 to match the non-zero coeffi-

cients.

For the fourth term Γβ
µ0Γ

µ
0β, β can be 0 or 1.
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3.1 Schwarzschild Metric

Hence,

R00 = Rµ
0µ0 = ∂µΓ

µ
00 − ∂0Γ

µ
µ0 + Γα

00Γ
µ
µα − Γβ

µ0Γ
µ
0β

= ∂1Γ
1
00 − 0 + Γ1

00Γ
µ
µ1 −

(
Γ0
µ0Γ

µ
00 + Γ1

µ0Γ
µ
01

)
= ∂1Γ

1
00 + Γ1

00Γ
µ
µ1 − Γ0

µ0Γ
µ
00 − Γ1

µ0Γ
µ
01

µ can be 0,1,2,3
= ∂1Γ

1
00 +

(
Γ1
00Γ

0
01 + Γ1

00Γ
1
11 + Γ1

00Γ
2
21 + Γ1

00Γ
3
31

)
−
(
Γ0
00Γ

0
00 + Γ0

10Γ
1
00 + Γ0

20Γ
2
00 + Γ0

30Γ
3
00

)
−
(
Γ1
00Γ

0
01 + Γ1

10Γ
1
01 + Γ1

20Γ
2
01 + Γ1

30Γ
3
01

)
= ∂1Γ

1
00 + Γ1

00Γ
0
01 + Γ1

00Γ
1
11 + Γ1

00Γ
2
21 + Γ1

00Γ
3
31 − Γ1

10Γ
1
00 − Γ1

00Γ
0
01

= ∂1Γ
1
00 + Γ1

00Γ
1
11 + Γ1

00Γ
2
21 + Γ1

00Γ
3
31 − Γ1

10Γ
1
00

= ∂1Γ
1
00 + Γ1

00Γ
1
11 + 2Γ1

00Γ
2
21 − Γ1

10Γ
1
00

= ∂r
∂rA

2B
+

∂rA

2B

∂rB

2B
+ 2

∂rA

2B

1

r
− ∂rA

2A

∂rA

2B

= ∂r

(
∂rA

2
B−1

)
+

∂rA∂rB

4B2
+

∂rA

rB
− (∂rA)

2

4AB

Chain rule
=

∂2
rA

2B
− ∂rA∂rB

4B2
+

∂rA

rB
− (∂rA)

2

4AB
.

Remember that the Einstein’s field equations suggest that all the compo-

nents of the Ricci tensors are equal to zero, i.e., R00 = 0, R11 = 0 and

R22 = 0.

Thus,

R00 =
∂2
rA

2B
− ∂rA∂rB

4B2
+

∂rA

rB
− (∂rA)

2

4AB
= 0.

For further simplification, denote the partial derivative of A and B with

respect to r as

∂rA → A′, ∂rB → B′,

and multiply the equation by a common denominator of 4AB2r to get the

rid of the denominators, after which we have

R00 = 2rABA′′ − rAA′B′ + 4ABA′ − rBA′2 = 0.
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3.1 Schwarzschild Metric

Similarly, we can get R11 and R22 as

R11 = Rµ
1µ1 = ∂µΓ

µ
11 − ∂1Γ

µ
µ1 + Γα

11Γ
µ
µα − Γβ

µ1Γ
µ
1β

= −∂1Γ
0
01 − 2∂1Γ

2
21 + Γ1

11Γ
0
01 + 2Γ1

11Γ
2
21 − Γ0

01Γ
0
10 − 2Γ2

21Γ
2
12

= −∂2
rA

2A
+

(∂rA)
2

4A2
+

∂rA∂rB

4AB
+

∂rB

rB

⇒ R11 = −2rABA′′ + rBA′2 + rAA′B′ + 4A2B′ = 0.

And

R22 = Rµ
2µ2 = ∂µΓ

µ
22 − ∂2Γ

µ
µ2 + Γα

22Γ
µ
µα − Γβ

µ2Γ
µ
2β

= ∂1Γ
1
22 − ∂2Γ

3
32 + Γ1

22

(
Γ0
01 + Γ1

11

)
− Γ3

32Γ
3
23

= − 1

B
+ 1− r

∂rA

2AB
+ r

∂rB

2B2

⇒ R22 = −2ABA+ 2AB2 − rA′B + rAB′ = 0.

Given all the Ricci components are zero,

R00 = 2rABA′′ − rAA′B′ + 4ABA′ − rBA′2 = 0,

R11 = −2rABA′′ + rBA′2 + rAA′B′ + 4A2B′ = 0,

R22 = −2ABA+ 2AB2 − rA′B + rAB′ = 0,

we are able to solve for functions A (r) and B (r).

Note that

R00 +R11 = 4ABA′ + 4A2B′ = 0

⇒ BA′ + AB′ = 0

which is equivalent to say the partial derivative of AB with respect to r is

0, i.e.,

∂r (AB) = 0.

Which implies that AB is a constant. Denote AB as K.

The value of the constant K is invariable and has nothing to do with
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3.1 Schwarzschild Metric

r. Thus, as r → y, i.e., as the Schwarzschild metric approaching to the flat

Minkowski metric, the value of K is invariable and equals to the value at

the Minkowski metric, i.e., g11g22 = 1× 1 = 1.

Thus, the constant K = 1 for all r, implies that

B (r) =
1

A (r)

holds for all r.

Substitute B = 1
A
= A−1 and B′ = ∂r (A

−1) = − A′

A2 back to R22 formula

and we have

R22 = −2ABA+ 2AB2 − rA′B + rAB′ = 0

⇒− 2A
1

A
+ 2A

1

A2
− rA′ 1

A
− rA

A′

A2
= 0

⇒− 2A+ 2− 2rA′ = 0

⇒rA′ = 1− A

⇒A (r) = 1− k

r
, where k is a constant

⇒B (r) =
1

A (r)
=

(
1− k

r

)−1

.

Currently, we have got the form of the Schwarzschild metric as
1− k

r
0 0 0

0 −
(
1− k

r

)−1
0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 .

We can then solve the constant k by forcing the Schwarzschild metric to

reproduce Newtonian gravity in the limit of low velocity and weak gravity,

we will skip this part because it is too complicated to discuss here.

Actually, k is usually denoted as Rs, the Schwarzschild radius, or called
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3.2 Geodesics

as the event horizon of the black hole, given as

k =
2GM

c2
,

where G is Newton’s gravitational constant.

Finally, we have the Schwarzschild metric to be
1− Rs

r
0 0 0

0 −
(
1− Rs

r

)−1
0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 ,

where k = 2GM
c2

, G is Newton’s gravitational constant, c is the speed of

light and M is the mass of the Schwarzschild black hole.

3.2 Geodesics

A massive particle’s world line through spacetime can be parameterized by

its proper time τ . And the geodesic equation parameterized with proper

time parameter τ as [5]

d2xσ

dτ 2
+ Γσ

µν

dxµ

dτ

dxν

dτ
= 0.

3.2.1 Null Geodesics

Since light beams are massless, they always have a proper time of zero by

definition, which means τ = 0 for all light beams by all times. Instead, we

parameterize light-like paths by a generic path parameter λ, which gives

tangent vectors d
dλ

alone the light world lines.

A light-like geodesic (or called null geodesic) is a geodesic where every

tangent vector along the path is light-like, and of course, the rate of change
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3.2 Geodesics

of these tangent vectors is zero. Which gives another geodesic equation

that is parameterized with a generic path parameter λ instead of proper

time τ , that works for massless particles [5],

d2xσ

dλ2
+ Γσ

µν

dxµ

dλ

dxν

dλ
= 0.

The null geodesic equation is actually 4 separate equations, one for each

spacetime coordinate through the σ index, which can refer to any of the

four spacetime variables, thus

d2ct

dλ2
+ Γt

µν

dxµ

dλ

dxν

dλ
= 0,

d2r

dλ2
+ Γr

µν

dxµ

dλ

dxν

dλ
= 0,

d2θ

dλ2
+ Γθ

µν

dxµ

dλ

dxν

dλ
= 0,

d2ϕ

dλ2
+ Γϕ

µν

dxµ

dλ

dxν

dλ
= 0.

3.2.2 Numerical Solution

Rewrite the Schwarzschild metric as

ds2 = c2
(
1− Rs

r

)
dt2 −

(
1− Rs

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2

where Rs = 2GM/c2 (∗).

Following the Schwarzschild metric above, the following Lagrangian can be

considered, noted as L2, such that

L2 = c2
(
1− Rs

r

)
ṫ2 −

(
1− Rs

r

)−1

ṙ2 − r2
(
θ̇2 − sin2 θϕ̇2

)
where dt = ṫ and etc.

For the particle whose mass is zero, such as a photon that are used in

the following simulation, we choose an arbitrary affine parameter noted λ
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for the universe line of the particle, (while if the particle has mass, then

the temporal derivatives can be taken with respect to the proper time

parameter τ , the parameter of the universe line of the massive particle).

Given the variational principle as δ
∫
L2dλ = 0, the Euler-Lagrange

equations gives

∂xµL2 − dλ∂ẋµL2 = 0,

where ẋµ = xµ/dλ, with xµ ∈ {t, r, θ, φ} which can be separated into the

equivalent system as following, (
1− Rs

r

)
ṫ = C1,(

1− Rs

r

)−1

r̈ +
Rsc

2

2r2
ṫ2 −

(
1− Rs

r

)−2
Rs

2r2
ṙ2 − r

(
θ̇2 + sin2 θϕ̇2

)
= 0,

θ̈ +
2ṙθ̇

r
− sin θ cos θϕ̇2 = 0,

r2 sin2 θϕ̇ = C2,

with C1 and C2 as two constants that remain to be identified.

Since the Schwarzschild metric being, by construction, with spherical

symmetry, which shows that the trajectories of the particles are plane or

more precisely, are contained in a coordinated hypersurface with equation

θ = θ0 [5]. Thus, the third equation in the above system admits for par-

ticular solution θ = π/2. In this case, the above system can be simplified

into, (
1− Rs

r

)
ṫ = C1,(

1− Rs

r

)−1

r̈ +
Rsc

2

2r2
ṫ2 −

(
1− Rs

r

)−2
Rs

2r2
ṙ2 − rϕ̇2 = 0,

r2ϕ̇ = h,

where h = r2ϕ̇ = C2.
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3.3 Event Horizon

Moreover, the second equation can be replaced by ds2/dλ2 = 0, that is,

(
1− Rs

r

)
ṫ2 −

(
1− Rs

r

)−1

ṙ2 − r2ϕ̇2 = 0.

Combining the other two equations, we have

ṙ2 +
h2

r2

(
1− Rs

r

)
= c2C2

1 .

Then change the variable r by 1/u, deviate from ϕ which gives

d2u

dϕ2
− 3Rs

2
u2 + u = 0,

which is the photon trajectory described by an ordinary differential equa-

tion, also the starting point of our Schwarzschild black hole simulation.

3.3 Event Horizon

Given that the Schwarzschild radius to be

Rs =
2GM

c2
.

Obviously it is only depends on the mass of the object and some physical

constants.

Usually, G is very small while c2 is quite large such that the Schwarzschild

radius is very small for most massive objects. However, when an object is

so incredibly massive and dense that its Schwarzschild radius Rs becomes

larger than its physical radius r0, the object is then called Schwarzschild

black hole and the Schwarzschild radius is then called the black hole’s event

horizon.
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3.4 Photon Sphere

3.4 Photon Sphere

Given the photon trajectory as

d2u

dϕ2
− 3Rs

2
u2 + u = 0.

In order to calculate the photon sphere (which is the case that r must be

constant), by setting r equals to constant, the derivative of u with respect

to ϕ, i.e., d
dϕ
u = d

dϕ
1
r
, therefore equals to zero.

Hence,
d2u

dϕ2
= 0.

Thus, the radius of photon sphere of the Schwarzschild metric can be given

as
3Rs

2

1

r2
+

1

r
= 0,

⇒ rsphere =
3

2
Rs.
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Chapter 4

Algorithm

4.1 Trajectory

The trajectory function is aimed to solve the differential equation in spher-

ical coordinate for a static black hole, which allows us to compute the

photon trajectory given the distance from the black hole and the initial

angular speed.

The core of this function is to resolve the initial value problem for the

ODE system,

v0 (ϕ) = u (ϕ)′ , v1 (ϕ) =
3Rs

2
u (ϕ)2 − u (ϕ)

with

v0 (0) =
1

D
, v1 (0) =

1

D tanα
,

by simple iterations.

After detecting that the light ray reaches the set boundary, the itera-

tions will be stopped to determine whether the light ray has been captured

by the black hole or not. If it is captured, the corresponding interval of

initial angle with given precision will be given as result as well.
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4.1 Trajectory

The algorithm to achieve the desired goal is shown below,

Input: angle: initial angle, belongs to [0, 180) degree; dist: distance from
the observer to the center of black hole;

Output: return r, ϕ, [αmin − j, αmin];
Data: c = 1: speed of light in vacuum; G = 1: Newton Constant; M = 1:

Black hole mass; distance max = 1: a multiple of D to prevent
divergence; dphi = 10 ∗ ∗(−4): ϕ’s range << 1 ∗ (10−4) avoiding
differences; ITERATION = int(3 ∗ π/ϕ): points to be calculated
(be aware of some trajectories may exceed a full lap); Rs = 2 ∗G ∗
M/c ∗ ∗2: Schwarzschild radius;

1 u = [1/dist] ∗ ITERATION , u1 = 1/(dist∗ tan(angle))
2 ITERATION REEL = 0

3 for i in range(ITERATION − 1) do

4 ITERATION REEL+ = 1

5 u2 = 3/2∗Rs∗u[i]∗∗2−u[i], u1 = u1+u2∗dphi, u[i+1] = u[i]+u1∗dphi
6 if 1/u[i+ 1] <= Rs or 1/u[i+ 1] > distance max ∗ dist then
7 Break

8 end

9 end

10 phi = [phi initial] ∗ ITERATION REEL

11 r = [dist] ∗ ITERATION REEL

12 for i in range(ITERATION REEL− 1) do

13 phi[i+ 1] = phi[i] + dphi, r[i+ 1] = 1/u[i]

14 end

By using the above algorithm, the two cases can be displayed and examined.

First case is by fixing the initial angle and gradually decrease the dis-

tance between observer and the black hole and the result is shown by

Figure 4.1.
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4.1 Trajectory

Figure 4.1 Initial angle = 30 degree, initial distance = 10, distance ap-
proaching to 0 by 5 each step

While the second case does the opposite, fixing the distance and gradually

decrease the initial angle of light rays whose result is shown by Figure 4.2.

Figure 4.2 Initial angle = 80 degree, initial distance = 30, angle approach-
ing to 0 by 10 degree each step

Moreover, the interval of initial angular speed can be also generated and

to examine it, just take the radius of Schwarzschild metric Rs = 8, the

distance between the observer and black hole D = 50 as example, the

interval is calculated by the algorithm as [24.2, 24.3] under the precision

of 0.1. The algorithm can be set to different precision according to our
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4.2 Visualization

requirements. As the precision decreases, the interval gets smaller and

smaller, as shown in Figure 4.3, allowing us to obtain the interval of initial

angle at which light is captured by the black holey, and to use the interval

to give the estimated initial angle.

Figure 4.3 Illustrate the αmin search, first precision: α ∈ [22, 26]; second
precision: α ∈ [24, 25], third precision: α ∈ [24.2, 24.3].

4.2 Visualization

To obtain better visualization of the optical properties of a Schwarzschild

black hole, we first need to make coordinate operations, then make interpo-

lation decisions and deal with the pixel colors (R,G,B) information. And

a flow chart that displays the whole process has been generated as shown

in section 4.2.2.

4.2.1 Coordinate Operations

As shown in the geodesic part, by spherical symmetry, we can restrict to

the Schwarzschild equatorial plane without loss of generality which gives,

θ =
π

2
,

dθ

dλ
=

d2θ

dλ2
= 0.

That is to say, we can always rotate our coordinate system so that the

35



4.2 Visualization

light trajectories lie in the equatorial plane of θ = π/2 as shown in the

Figure 4.4.

Given equirectangular images are two-dimensional images, the image

distorted by the black hole can be interpreted as the whole equirectangular

image rotates inside and outside the image plane with different rotation

axes centered on the black hole. Then the light trajectories close to the

black hole can then be calculated to complete distorted image.

In this case, the best way to get the resulting vector when rotating the

given vector around the axis is by using Euler–Rodrigues formula.

The Euler–Rodrigues formula explains the three-dimensional rotation of

a vector. It employs a different parametrization than Rodrigues’ rotation

formula — the rotation is represented by four Euler parameters due to

Leonhard Euler.

Given the three-dimensional vector v = [vx, vy, vz] that is needed to be

rotated around the three-dimensional axis u = [ux, uy, uz] and the rotation

angle θ in radian, the four real numbers a, b, c and d which represents the

rotation can be calculated as

a = cos
θ

2
,

b = − ux√
ux · ux

sin
θ

2
,

c = − uy√
uy · uy

sin
θ

2
,

d = − uz√
uz · uz

sin
θ

2
.

Then, the rotation matrix α can be calculated as

α =


a2 + b2 − c2 − d2 2 (bc− ad) 2 (bd+ ac)

2 (bc+ ad) a2 − b2 + c2 − d2 2 (cd− ab)

2 (bd− ac) 2 (cd+ ab) a2 − b2 − c2 + d2

 .
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4.2 Visualization

Hence, the vector v′ which is rotated by the rotation of vector v around

axis u in θ angle can then be represented as

v′ = αv.

Once the rotation matrix α are generated and finished the whole rotation

on equirectangular image, it is pretty easy to conduct the following coor-

dinate operations. We then need to calculate the final position of light

rays according to the previous trajectory algorithm, and then transform

the light rays’ final position back to the equirectangular image plane using

the inverse rotation matrix −α.

Finally, loops go through each pixel to assign the (x2, y2) pixel color

(R,G,B) information to the (x, y) pixel.
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4.2 Visualization

Figure 4.4 Coordinate Operations
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4.2 Visualization

4.2.2 Flowchart
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4.2 Visualization

4.2.3 Visualization Result

Write the code according to the flowchart above and use the default RGB

image of the Python system as the input equirectangular image,

Figure 4.5 Default RGB Image

The equirectangular image, after being distorted by a Schwarzschild black

hole with Rs = 8 and D = 50, is obtained as

Figure 4.6 Image Distorted by a Schwarzschild Black Hole with Rs = 8,
D = 50
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Chapter 5

Conclusion

In this signature work, the basic concepts and definitions of differential

geometry are briefly introduced, says metric, connection, Riemann curva-

ture tensor and geodesic equation. Then, the components of Einstein’s field

equations are introduced according to these basic concepts and definitions.

Afterwards, the derivation of the Schwarzschild Metric is shown. Next,

the concept of null geodesic is presented and the geodesics governed by

the Schwarzschild Metric is derived using Euler-Lagrange equation. Later,

event horizon and photon sphere are introduced as the properties derived

from Schwarzschild Metric are shown.

As for creation parts, the trajectories of light rays near a Schwarzschild

black hole are calculated by solving the geodesic equation in one variable

numerically. Then the optical distortion by a Schwarzschild black hole

of two-dimensional images can also be generated thanks to the circular

symmetry. In order to give a better visualization of Schwarzschild black

hole, a whole set of more complex code involving has been built.

This signature work could serve as starting point for modelling gravi-

tational lensing of accretion disks around black holes.
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